Learning By Doing

Experiential learning models

There are a number of different approaches or terms within “learning by doing” or “Experiential learning“ (learning within real world contexts) heading, such as:

  • laboratory, workshop or studio work;
  • apprenticeship;
  • problem-based learning;
  • case-based learning;
  • project-based learning;
  • inquiry-based learning;
  • cooperative (work- or community-based) learning.

Experiential learning focuses on learners reflecting on their experience of doing something, so as to gain conceptual insight as well as practical expertise. Kolb’s experiential learning model suggests four stages in this process:

  • active experimentation;
  • concrete experience;
  • reflective observation;
  • abstract conceptualization.

There are many different design models for experiential learning, but they also have many features in common.

Laboratory, workshop or studio work: An important pedagogical value of laboratory classes is that they enable students to move from the concrete (observing phenomena) to the abstract (understanding the principles or theories that are derived from the observation of phenomena). Another is that the laboratory introduces students to a critical cultural aspect of science and engineering, that all ideas need to be tested in a rigorous and particular manner for them to be considered ‘true’.

Apprenticeship is a particular way of enabling students to learn by doing. It is often associated with vocational training where a more experienced responsible or journeyman models behaviour, the apprentice attempts to follow the model, and the journeyman provides feedback. Learning in apprenticeship is not just about learning to do (active learning), but also requires an understanding of the contexts in which the learning will be applied. In addition there is a social and cultural element to the learning, understanding and embedding the accepted practices, customs and values of experts in the field.

Problem-based learning: The earliest form of systematised problem-based learning (PBL) was developed in 1969 by Howard Barrows and colleagues in the School of Medicine at McMaster University in Canada, from where it has spread to many other universities, colleges and schools. This approach is increasingly used in subject domains where the knowledge base is rapidly expanding and where it is impossible for students to master all the knowledge in the domain within a limited period of study. Working in groups, students identify what they already know, what they need to know, and how and where to access new information that may lead to resolution of the problem. The role of the instructor (usually called a tutor in classic PBL) is critical in facilitating and guiding the learning process.

Case-based learning: With case-based teaching, students develop skills in analytical thinking and reflective judgment by reading and discussing complex, real-life scenarios.

Project-based learning: Project-based learning is similar to case-based learning, but tends to be longer and broader in scope, and with even more student autonomy/responsibility in the sense of choosing sub-topics, organizing their work, and deciding on what methods to use to conduct the project. Projects are usually based around real world problems, which give students a sense of responsibility and ownership in their learning activities.

Inquiry-based learning: Inquiry-based learning (IBL) is similar to project-based learning, but the role of the teacher/instructor is somewhat different. In project-based learning, the instructor decides the ‘driving question’ and plays a more active role in guiding the students through the process. In inquiry-based learning, the learner explores a theme and chooses a topic for research, develops a plan of research and comes to conclusions, although an instructor is usually available to provide help and guidance when needed.

 

Strengths and weaknesses of apprenticeship learning model

(https://www.tonybates.ca/2014/08/06/models-for-teaching-by-doing-labs-apprenticeship-etc/)

Focusing on apprenticeship learning model, the main advantages can be summarised as follows:

  • teaching and learning are deeply embedded within complex and highly variable contexts, allowing rapid adaptation to real-world conditions
  • it makes efficient use of the time of experts, who can integrate teaching within their regular work routine
  • it provides learners with clear models or goals to aspire to
  • it acculturates learners to the values and norms of the trade or profession

On the other hand, there are some serious limitations with an apprenticeship approach, particularly in non-traditional apprenticeship:

  • much of a master’s knowledge is tacit, partly because their expertise is built slowly through a very wide range of activities,
  • experts often have difficulty in expressing consciously or verbally the schema and ‘deep’ knowledge that they have built up and taken almost for granted, leaving the learner often to have to guess or approximate what is required of them to become experts themselves,
  • experts often rely solely on modelling with the hope that learners will pick up the knowledge and skills from just watching the expert in action, and don’t follow through on the other stages that make an apprenticeship model more likely to succeed.
  • there is clearly a limited number of learners that one expert can manage, given that the experts themselves are fully engaged in applying their expertise in often demanding work conditions which may leave little time for paying attention to the needs of novice learners in the trade or profession
  • vocational apprenticeship programs have a very high attrition rate: for instance, in British Columbia, more than 60 per cent of those that enter a formal campus-based vocational apprenticeship program withdraw before successful completion of the program. As a result, there are large numbers of experienced tradespeople in the workforce without full accreditation, limiting their career development and slowing down economic development where there are shortages of fully qualified skilled workers
  • in trades or occupations undergoing rapid change in the workplace, the apprenticeship model can slow adaptation or change in working methods, because of the prevalence of traditional values and norms being passed down by the ‘master’ that may no longer be as relevant in the new conditions facing workers. This limitation of the apprenticeship model can be clearly seen in the post-secondary education sector, where traditional values and norms around teaching are increasingly in conflict with external forces such as new technology and the massification of higher education.

Nevertheless, the apprenticeship model, when applied thoroughly and systematically, is a very useful model for teaching in highly complex, real-world contexts.

Activity 1: Assessing experiential design models

Please answer the following questions for yourself.

  1. If you have experiences with apprenticeship, what worked well and what didn’t?
  2. Are the differences between problem-based learning, case-based learning, project-based learning and inquiry-based learning significant, or are they really just minor variations on the same design model?
  3. Do you have a preference for any one of the models? If so, why?

Test your knowledge!